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Abstract

The application of theoretical methods based on density functional theory using hybrid functionals and localized, atomic orbital

type basis sets is shown to provide good estimates for exchange coupling constants in non-metallic, solid state transition metal

compounds with relatively complex crystal structures. The accuracy of the calculated exchange coupling constants is similar to that

previously obtained for dinuclear and polynuclear molecular compounds. As an application of this procedure, the magnetic

properties of the high-temperature phase of CuGeO3, the recently synthesized silver copper oxide Ag2Cu2O3, and the family of

M[N(CN)2]2 (M=Cr(II), Mn(II), Fe(II), Co(II), Ni(II) and Cu(II)) compounds are analyzed via the computation of their most

relevant exchange coupling constants.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Molecular magnetism is one of the most active areas
in modern transition metal chemistry [1–4]. Early on,
research in this field focused mainly on the magnetic
properties of isolated dinuclear complexes with the aim
of gaining some understanding of the key structural and
electronic factors that control the exchange coupling
between two metal centers bearing unpaired electrons.
During the last decade, however, interest in molecular
magnetism has shifted towards the preparation of new
materials with more complex magnetic structures [5].
New magnetic properties have been sought for by
extending the dimensionality of the exchange interaction
to chain, two- or even three-dimensional structures
based on molecular building blocks. The result of this
effort is the synthesis of extended structures in which
metal centers bearing unpaired electrons are linked by
different bridging units giving rise to non-metallic
materials with interesting magnetic properties. Follow-

ing the usual procedure adopted for molecular species,
these magnetic properties are often interpreted in terms
of a phenomenological Heisenberg Hamiltonian invol-
ving several exchange pathways that can be character-
ized by the corresponding exchange coupling constant
for each pair of coupled paramagnetic units. Although
fitting the magnetic susceptibility curves to obtain the
value of the coupling constants is feasible for discrete,
one- and two-dimensional systems, this procedure
encounters some difficulties in the case of three-
dimensional networks for which only approximate
mean-field models are available for extracting the values
of the coupling constants from experimental data [6].
From a theoretical point of view, the calculation of

the exchange coupling constants of transition metal
compounds has been limited usually to dinuclear
complexes [7] although a few attempts to obtain this
property for isolated polynuclear compounds [8] or even
for extended solid state structures have been published
recently [9,10]. The need for the inclusion of electron
correlation effects to reach a proper description of the
electronic structure of exchange coupled polynuclear
transition metal compounds has limited the applications
of the most popular semiempirical methods in this field
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[11]. Sophisticated post-Hartree–Fock methods have
been shown to provide good approximations to
coupling constants for molecular species, but the huge
demand of computational resources associated to these
methods severely limits their applicability to most of the
complexes of actual experimental interest [12–14]. This
approach is also only available in the case of extended
solid state structures if the crystal structure is fragmen-
ted into isolated clusters containing a finite number of
paramagnetic centers [15]. The calculation of exchange
coupling constants for extended periodic structures has
thus been attempted mainly using the UHF method that
has been shown to provide only qualitative values in the
case of dinuclear compounds where comparison with
more sophisticated post-Hartree–Fock methods and
accurate experimental data is possible [16,17]. The
application of density functional theory (DFT) [18]
based methods for the calculation of exchange coupling
constants in dinuclear compounds has been shown in
the last years to provide a reasonable compromise
between the size of the compounds that can be studied
and the accuracy of the calculated coupling constants
that can be extracted from them [17,19–21]. Considering
that these methods have also been implemented in
programs designed for the calculation of the electronic
structure of periodic systems [22], this approach offers
the opportunity for studying extended solids at the same
level as discrete molecular entities.
The comparison of calculated exchange coupling

constants with those obtained experimentally is, how-
ever, not straightforward since experimental data are in
most cases obtained from a fitting of the magnetic
susceptibility to the expression obtained using a model
that includes several simplifying assumptions. One of
the problems associated with this technique is the
existence of several independent sets of parameters that
provide a reasonably good fitting of the susceptibility
curve. Another difficulty arises because some simplify-
ing hypothesis, such as the neglect of next-nearest
neighbor interactions or the assumption of identical
parameters for interactions that are not exactly equiva-
lent by symmetry, are often adopted to reduce the
number of fitting parameters. The situation is especially
difficult for the case of three-dimensional networks for
which no models relating the experimental data with the
coupling constants are available and only approximate
mean-field results relating the value of J to the critical
temperature can be applied [6,23]. Thus, the use of
theoretical methods to estimate the exchange coupling
constants can be foreseen as a valuable tool for the
experimentalist to rule out those sets of experimental
fitted constants that are deemed unrealistic according to
calculations.
The present paper has a principal goal, which is to

show that the general strategy used to calculate
exchange coupling constants for isolated polynuclear

transition metal compounds can be easily adapted to the
determination of these parameters in extended solid
state compounds. For this, we have used CRYSTAL98
[22], a general purpose program for the calculation of
the electronic structure for periodic systems using
localized, atomic basis sets which allows the option of
performing spin-polarized calculations both at the
Hartree–Fock and DFT levels including hybrid func-
tionals. The applicability of the proposed method will be
illustrated by applying it to three different examples for
which partial experimental information is available.

2. Calculation of exchange coupling constants in

dinuclear compounds

If we neglect the zero field splitting terms, the main
parameter used to quantify the magnetic properties of a
dinuclear complex is the exchange coupling constant J

between the two paramagnetic centers with total spins
S1 and S2; respectively, which is defined through the
phenomenological Heisenberg Hamiltonian:

Ĥ ¼ �JŜ1Ŝ2: ð1Þ

We have shown in previous works that methods based
on DFT using hybrid functionals constitute a powerful
tool to calculate exchange coupling constants, and hence
magnetic properties, of dinuclear systems [19–21,24–28].
The estimation of the exchange coupling constant in a
dinuclear compound involves the calculation of the
energy difference between the high- and low-spin
solutions shown schematically in Scheme 1. In the case
of symmetric homodinuclear complexes the low-spin
solution corresponds to a broken symmetry wavefunc-
tion [29–31]. Using the phenomenological spin Hamil-
tonian (Eq. (1)) for the simplest case of one unpaired
electron on each of the two centers, it may be easily
shown that the value of the exchange coupling constant
corresponds to the energy difference between the triplet
and the singlet states. We have shown in previous work
[17] that when using DFT calculations the energy of the
singlet state can be approximated using that of the
single-determinant broken-symmetry solution shown in
Scheme 1 and the relation between the calculated
energies and the exchange coupling constant is

EBS � EHS ¼ ð2S1S2 þ S2ÞJ12; ð2aÞ

where S2pS1 are the spins on each paramagnetic center.
On the other hand, for Hartree–Fock calculations a spin-
projected formula must be used and the relationship
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between the calculated energies and the exchange
coupling constant that results is

EBS � EHS ¼ 2S1S2J12: ð2bÞ

The use of the non-spin projected energy of the
broken symmetry solution as the energy of the low-spin
state within the DFT framework has been the source of
controversy between different authors [16,17,32]. Re-
cently, Polo et al. have shown that the self-interaction
error of commonly used exchange functionals mimics
long-range (non-dynamic) pair correlation effects in an
unspecified way [33,34]. On the contrary, if system-
specific non-dynamic correlation effects are introduced
via the form of the wave function as in BS-UDFT
calculations through spin projection, these effects will be
suppressed if the exchange functional already covers a
considerable amount of non-dynamic correlation. Thus,
the application of spin projection techniques to DFT
calculations results then probably in the suppression (or
double counting) of such long-range correlation effects.
In order to illustrate the performance of the different

methods commonly used to calculate exchange coupling
constants we present in Table 1 the values for the
exchange coupling constant calculated for the hypothe-
tical H?He?H molecule at different geometries. This
is the simplest system one can think of in which two
unpaired electrons couple through a superexchange
pathway. Although no experimental information exists
for such compound, its small size makes it possible to
perform full CI calculations and it has become a
standard benchmark for the calculation of coupling
constants.
These results show that the B3LYP hybrid DFT

functional [35] in combination with Eq. (2a) yields the
best approximation to the full CI results. Pure func-
tionals like the local LDA [36,37] or the GGA-corrected
BLYP [38,39] one tend to overestimate the value of the
coupling constant. Using the UHF method in combina-
tion with Eq. (2b) gives also reasonable values for the
coupling constant which are, however, somewhat lower
than those obtained at the full CI level.
The same trends are found when applying this

computational strategy to more complex systems like

transition metal dinuclear compounds. For these, the
local density approximation gives the worst results, with
a magnitude of J which is 3–5 times larger than the
experimental value. The use of gradient-corrected
functionals strongly reduces the calculated value of J

that is, however, still strongly overestimated. The use of
the hybrid B3LYP functional gives in this case again the
best agreement with the experimental results. As an
illustration of these findings we can compare the values
obtained for the Cu(II) acetate dinuclear complex [40]
(Scheme 2) using different methods with the experi-
mental one (Table 2).
The comparison of the calculated J adopting the

B3LYP functional and its experimental value for several
families of dinuclear transition metal compounds with
different bridges using the complete, non-modeled
structure for each complex is shown in Fig. 1. The
agreement between calculated and experimental data
found for all these compounds allows us to believe that
the use of this method in more complex cases like
polynuclear compounds or extended solid state struc-
tures will also yield essentially correct values for the
exchange coupling constant. It is specially important to
point to the fact that in all dinuclear compounds studied
so far the experimental sign of the coupling constant
(negative for antiferromagnetic coupling, positive for
ferromagnetic coupling) is correctly reproduced by using
the B3LYP functional in combination with Eq. (2a). The
results obtained using the UHF method are qualitatively
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Table 1

Exchange coupling constants J (cm�1) for the H?He?H system at

different H?He distances [16,17,32]

Method d ¼ 1:250 Å d ¼ 1:625 Å d ¼ 2:000 Å

UHF �3894 �420 �40
LDA �6264 �775 �85
BLYP �5391 �621 �69
B3LYP �4367 �513 �57
Full CI �4860 �544 �50

All values calculated using DFT-based methods have been obtained

applying Eq. (2a), while Eq. (2b) has been used to obtain the UHF

results. The full CI value corresponds directly to the singlet–triplet gap.

Scheme 2.

Table 2

Exchange coupling constants J (cm�1) for Cu(II) acetate calculated

using several methods [7]

Method J

UHF �54
LDA �1057
BLYP �779
B3LYP �299
Exp. �297

All values calculated using DFT-based methods have been obtained

applying Eq. (2a), while Eq. (2b) has been used to obtain the UHF

results.
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correct but a significant underestimation of the value for
the coupling constant is systematically found when
comparing them with the experimental results.

3. Calculation of exchange coupling constants in

extended solids

If we turn now to extended solids, the Hamiltonian
usually employed is considerably more complex due to
the presence of several exchange pathways with different
J values. If one neglects spin–orbit coupling effects, the
Hamiltonian for a general extended structure is indi-
cated in

Ĥ ¼
X
i4j

JijŜiŜj; ð3Þ

where Ŝi and Ŝj are the spin operators of the different
paramagnetic centers. The Jij values are the coupling
constants between all the paramagnetic centers. The
periodicity of the structure allows us to restrict ourselves
to interactions within a single unit cell. In most of the
cases the exchange interaction is limited only to nearest
neighbors. This fact together with the presence of
additional symmetry elements in the crystal structure
results normally in a reduced set of Jij values.
At this point it is worth to discuss about the

comparability of the calculated and experimental
exchange coupling constants in some detail. From the
experimental point of view, the Heisenberg Hamiltonian
is employed to estimate the energies of the states that
are used in the fitting of the magnetic susceptibility. In
the calculation of coupling constants by quantum
chemical methods, the Heisenberg Hamiltonian is
also adopted. When using single-determinant methods,
such as DFT or HF, the calculated energies are related
to the diagonal matrix elements of the Heisenberg

Hamiltonian. An alternative way to describe the system
is by considering an Ising Hamiltonian as a special case
of an Heisenberg Hamiltonian in which only the
diagonal terms are kept. Thus, we can consider that
the wavefunctions obtained with the single-determinant
methods are eigenfunctions of an Ising Hamiltonian that
is formulated with the same J values than the original
Heisenberg Hamiltonian because their diagonal terms
are identical. For that reason, the J values obtained with
single-determinant methods are directly comparable to
those obtained from experimental data.
The procedure proposed by us here for the calculation

of the set of exchange coupling constants in an extended
compound with n different Jij values consists in the
calculation of n þ 1 energies corresponding to different
spin distributions within the unit cell. Such energies, as
indicated above, are related to the eigenvalues of the
Ising Hamiltonian (identical to the diagonal matrix
elements of the Heisenberg Hamiltonian) and we can use
them to obtain a system of n equations with n

unknowns, the Jij values.
Since for a pair of paramagnetic centers the energy

difference between the ferromagnetic and the antiferro-
magnetic spin configurations is given by Eq. (2a), we can
extend that approach to periodic extended compounds
by just expressing the difference in energy between
different spin configurations as a sum of pairwise
interactions within the unit cell. Let us illustrate the
procedure by applying it to one of the examples that will
be discussed below. The crystal structure of Ag2Cu2O3

shown in Fig. 2 consists of alternating chains of edge-
sharing square planar CuO4 units and zigzag chains of
linearly coordinated silver ions [10,41].
At this stage it is only important to note that the

copper atoms bearing each one unpaired electron are
arranged in chains that run parallel to the a and b

directions consecutively as we move along the c
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Fig. 1. Experimental exchange coupling constants for some families of dinuclear compounds with different bridging ligands, represented as a

function of the calculated value with the B3LYP broken symmetry method using the complete, non-modeled structure for each compound.
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direction, resulting in a stacking of mutually perpendi-
cular chains of Cu(II) ions. In this case we can think of
ferro- or antiferromagnetic coupling within and between
the chains and hence, if only nearest neighbor interac-
tions are considered, two exchange coupling constants
are needed: Ja ¼ Jb for the coupling along the chains
that run parallel to the a and b directions and Jc for the
interaction between neighboring perpendicular chains.
In order to extract the values of these two constants
we need, apart from the ferromagnetic structure (F in
Fig. 3) in which all spins are aligned in the same
direction, two other spin configurations. The second
magnetic structure considered (A in Fig. 3) has

ferromagnetic coupling within the chains but antiferro-
magnetic coupling between them, while the third spin
distribution considered (A0 in Fig. 3) corresponds to
antiferromagnetic interactions within the chains.
To extract the coupling constants from energy

differences between these three spin distributions we
must first determine how many interactions of each type
are included in the unit cell. From the representation of
the unit cell shown in Fig. 2 we can easily deduce that
there are eight intrachain and 16 interchain pairs per
unit cell. Since in spin distributions A and F coupling
within the chains is the same, their energy difference will
depend only on the intrachain coupling constant Jc:

EA � EF ¼ 16Jc: ð4aÞ
The energy difference between spin distributions A0 and
F depends on both coupling constants. In this case all
intrachain pairs and half of the interchain ones change.
The energy difference between both magnetic config-
urations is thus

EA0 � EF ¼ 8Ja þ 8Jc: ð4bÞ
From these two equations we can obtain the following
expressions for the coupling constants:

Jc ¼
EA � EF

16
ð5aÞ

and

Ja ¼ �1
8

EA þ EF

2
� EA0

� �
: ð5bÞ

This approach can, in principle, be applied to any
periodic structure and the difficulty of computing
exchange coupling constants is only limited by the
complexity of the magnetic structure of the solid. In
systems with low symmetry the necessity of using a large
set of coupling constants makes the procedure more
tedious. In some cases it is necessary to use unit cells
larger than the primitive one. The computational cost
associated with the use of these supercells represents in
some cases an important limitation to the application of
this procedure.

4. Calculation of exchange coupling constants: examples

Before describing in more detail the calculation of
exchange coupling constants for some of the compounds
studied in our group we would like to do a brief review
of the work performed by other research groups in the
same direction. The first studies of open-shell transition-
metal compounds using the CRYSTAL code date back
to 1993 when the possibility of performing unrestricted
Hartree–Fock calculations was included in the program
[22]. These early studies were devoted to simple oxides
like VO, MnO or NiO [42–45]. Due to their highly
symmetric rock-salt structure, these solids are relatively
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Fig. 2. Crystal structure of Ag2Cu2O3. Silver, copper and oxygen

atoms are represented by white, black and gray spheres, respectively.

Fig. 3. Schematic representation of the three spin configurations

considered to obtain the exchange coupling constants for Ag2Cu2O3.
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simple to study, but do not give information on more
subtle questions such as the influence of bond angles on
superexchange and magnetic properties. Although no
coupling constants were evaluated in these works, a
qualitatively correct ground-state electronic structure
was obtained in which the wide band-gap insulating
character was found to be a result of large on-site
Coulomb interactions. The effect of exchange and
correlation on the bulk properties of NiO and CoO
has also been examined recently performing calculations
with different DFT-based methods [46].
The electronic structure of transition-metal oxides

with the corundum structure has also been analyzed
using the UHF method. Calculations for a-Fe2O3 [47],
Cr2O3 [48], Ti2O3 and V2O3 [49] predict the correct
antiferromagnetic structure for a-Fe2O3, Cr2O3 and
Ti2O3 �V2O3 is also predicted to be an antiferromagnetic
insulator although it is experimentally found to be a
metallic conductor. In the case of Ti2O3 and V2O3 the
evolution of the magnetic properties with the c=a ratio
has also been studied and an explanation for the
insulator to metal transition observed in Ti2O3 is given.
Other transition-metal compounds for which the

magnetic properties have been studied using UHF
approach within the CRYSTAL program are the
antiferromagnetic MnCr2O4 spinel [50], the CaMnO3

and LaMnO3 perovskites [51–53], MnFe2O4 [54], a-MnS
[55,56], the cubic and hexagonal forms of b-MnS [56,57],
pyrite-type p-MnS2 [58], bimetallic Cr(III) cyanides [59],
V-doped TiO2 [60] and the non-cubic Mn3O4 spinel [9].
In some of these cases exchange coupling constants were
also estimated. For CaMnO3 [51] the antiferromagnetic
state is found to be more stable than the ferromagnetic
one. The experimental superexchange magnetic constant
can be related to the difference in energy between those
two states, DE; through the following relation:

DE ¼ z Jj jS2; ð6Þ

if the Ising Hamiltonian is assumed. In the above
equation z is the number of Mn–Mn next-nearest
neighbors and S the spin of the Mn ion. The calculated
value for the exchange coupling constant, Jcalc ¼ �49K
turns out to be about five times larger than the
experimental one Jexp ¼ �9:2K, where, as it is custom-
ary in solid state physics, the exchange constants in
energy units have been divided by Boltzmann’s constant
to yield quantities with the dimensions of temperature
(1K is equivalent to 0.695 cm�1). This disagreement is
probably originated by the modeling of the unit cell used
in the calculations, since, as it has been found now in
numerous examples, the UHF method tends to under-
estimate the coupling constants. Another case for which
coupling constants have been calculated is the non-cubic
Mn3O4 spinel hausmannite [9]. From the point of view
of ab initio calculations this case should be considered as
a difficult system for various reasons: (a) it has a

tetragonally distorted spinel structure with a relatively
low symmetry, (b) it contains six manganese atoms in
the unit cell from which two are expected to have an
electronic configuration close to d5 (MnA) and the other
four close to d4 (MnB) and (c) the latter atoms are
expected to give raise to a Jahn–Teller distortion. As far
as their magnetic properties are concerned, spinels are
well known for their ferrimagnetism, mainly due to
antiferromagnetic interactions between the A–B sub-
lattices. The A–A interactions are usually very weak
because tetrahedra are not directly connected and B–B
interactions are weaker than the A–B ones but control
the B sublattice magnetic configuration. Chartier et al.
[9] have used seven different spin configurations to
extract, using the procedure explained in the preceding
section, four different superexchange constants. Their
results agree qualitatively well with the experimentally
known constants, but the magnitude of the calculated
coupling constants is only about 40–50% of the
experimental ones.
The calculation of exchange coupling constants has

been one of the main focuses of several works dedicated
to solids like perovskites KMF3 (M=Mn(II), Fe(II),
Co(II) and Ni(II)) [61,62], the Jahn–Teller distorted
perovskite KCuF3 [63], layered perovskites K2MnF4

and K2NiF4 [64], the rutile-type compounds MF2

(M=Mn(II), Fe(II), Co(II) and Ni(II)) [65–68] or
compounds related to the high Tc superconducting
cuprates like La2CuO4 and La2NiO4 [69], Sr2CuO3 and
Sr2CuO2Cl2 [70], Li2CuO2 [15] and CaCuO2 [71]. The
general finding in all these works is that UHF
calculations reproduce correctly the antiferromagnetic
nature of the ground state but lead to values for the
coupling constants which are about 30–50% of the
experimental ones. In only one of these works [71] spin-
polarized DFT calculations based on the B3LYP
functional have been employed. The calculated electro-
nic structure of CaCuO2 corresponds to that of an
antiferromagnetic insulator for which the theoretical
energy gap and magnetic moment are in excellent
agreement with the experiments. The ratio of intralayer
to interlayer magnetic coupling constants and lattice
parameters are also in good accordance with the
experiments.
As a summary of the preceding discussion we can

state that the CRYSTAL program can be considered as
a valuable theoretical tool for the study of magnetic
properties for open-shell transition metal compounds.
The UHF approach applied to a wide variety of such
materials has been able in most of the cases to yield the
correct magnetic structure for them. As far as exchange
coupling constants are concerned the results obtained
are, in general, in qualitative agreement with the
experimental ones although the actual values of these
parameters are strongly underestimated by the UHF
approach. As discussed above, previous work performed
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for dinuclear and polynuclear transition-metal com-
pounds shows however that this trend can be overcome
in most cases by using DFT-based calculations adopting
the hybrid B3LYP functional. In the following we will
show that this approach, which has been successfully
applied for molecular compounds, can also be applied to
extended solid state compounds. For this purpose we
will describe with some detail some of the results
obtained recently in our research group.

5. Exchange coupling in CuGeO3

The spin-Peierls transition is an interesting phenom-
enon predicted to appear in spin chains. In systems
showing this type of behavior below a critical tempera-
ture a structural distortion, a dimerization of the chains,
results in a rapid drop of the magnetic susceptibility.
Since 1993 when CuGeO3, the first inorganic spin-
Peierls compound [72], was discovered a huge amount of
work has been devoted to its special magnetic properties
[73]. Above 14K CuGeO3 has an orthorhombic unit cell
(Fig. 4) in which linear chains of Cu(II) ions coordinated
by oxygen atoms in a square planar fashion run parallel
to the crystal c direction. The oxygen atoms bridging
two copper atoms are simultaneously forming tetrahe-
dral GeO4 units that provide a link between neighboring
chains in the b direction. At lower temperatures the unit
cell is slightly distorted to give a dimer character to the
chains.
From the magnetic point of view, the high tempera-

ture phase shows long-range-order antiferromagnetic
coupling along the copper chains. This coupling is
usually described using a Heisenberg Hamiltonian with
two exchange constants Jc (between neighboring copper
atoms) and aJc (between next-nearest neighbors).
Depending on the experimental data different values

have been given for Jc ranging between �120 and
�180K [74–78]. The value of a has been estimated
between 0.24 and 0.36. Coupling along the two other
crystallographic directions is estimated to be much
smaller (Jb ¼ 0:1Jc and Ja ¼ �0:01Jc) and is usually not
considered in the models employed to interpret the
magnetic data of this compound.
Although several theoretical studies of the electronic

structure of CuGeO3 have been reported, no ab initio

determination of the coupling constants has been
attempted for the full crystal structure. In a previous
paper we calculated the exchange coupling constants for
this material using discrete cluster models in combina-
tion with the DFT method outlined above [79]. The two
models used for this purpose included two and three
copper atoms, respectively, bridged by GeO4 groups.
The dangling bonds at the terminal oxygen atoms were
saturated using hydrogen atoms. Using the experimental
geometry in the high-temperature phase our calculations
for the trinuclear cluster model yield Jc ¼ �154K and
a ¼ 0:17 (i.e., aJc ¼ �26K).1 Although these results are
in good agreement with the experimental data, we would
like to have an estimate of the error committed by
employing a finite cluster model in the calculation. This
question is especially relevant if we consider that using
the cluster with only two copper atoms a substantially
lower value, �60K, is obtained for Jc:
Now we have undertaken the calculation of the

coupling constant Jc using the full periodic crystal
structure to avoid possible artifacts in the calculation
due to the modeling process. In addition, the calculation
for the periodic model will allow us to obtain an
estimate for the intrachain coupling constant Jb which
was not considered in our previous study. This case, for
which more or less reliable experimental information on
the coupling constants is available, represents also an
excellent benchmark for testing the use of different
functionals in the estimation of coupling constants for
periodic structures. For the calculation of the two
constants involved we have considered the three
magnetic configurations sketched in Fig. 5.
The resulting equations for the coupling constants in

this case are

Jc ¼
EF � EA

4
ð7aÞ

and

Jb ¼
EF � E

A’
4

: ð7bÞ

The values for the coupling constants obtained using
different methods are presented in Table 3. A look at
these results shows clearly that, for this case, the B3LYP
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Fig. 4. Crystal structure of CuGeO3. Copper, germanium and oxygen

atoms are represented by black, white and gray spheres, respectively.

1The values for the exchange coupling constant for the trinuclear

model in Ref. [79] are slightly different from the ones given here

because they were obtained using an approximate model.
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method is the only one capable of reproducing the
experimental data. When comparing the value of Jc with
those obtained previously for cluster models we find an
intermediate value which is in better agreement with
the available experimental data than those found for the
cluster models. Both the sign and the magnitude of
the interchain coupling constant Jb agree also well
with the available experimental data. The UHF method
yields in this case an intrachain coupling constant with
the wrong sign because the ground state is incorrectly
predicted to correspond to the A0 spin configuration.
Calculations with pure functionals reproduce the sign of
the coupling constants, but tend, as indicated above, to
overestimate their magnitude. In this case the perfor-
mance of the GGA-corrected functional BLYP is
especially bad overestimating the coupling constants

by an order of magnitude. Despite this failure, the ratio
between both constants is more or less well reproduced.
For LDA calculations we find also a significant over-
estimation of both coupling constants and in this case
the problem is especially evident for the interchain
coupling constant whose value is predicted to be
practically half of the intrachain one in clear contra-
diction with experimental results.
One important difference that arises when comparing

the results obtained using the four methods concerns the
delocalization of the unpaired electrons [80]. When
comparing the calculated spin densities on the copper
atoms it is evident that calculations using pure
functionals lead to an excessively delocalized solution
with spin densities as low as 0.18e for the LDA case.
This exaggerated delocalization is in the origin of the
overestimation of the exchange coupling constants
obtained when employing these methods. As found in
previous work for molecular systems the UHF spin
density tends to be much more localized than the DFT
ones. The value obtained for the B3LYP case is in
excellent agreement with the available experimental data
[81].

6. Magnetic properties of the first silver copper oxide

Ag2Cu2O3

Although copper and silver belong to the same family,
share common features, and readily form alloys in their
metallic states, the formation of ternary compounds
including these two elements is quite rare. In this
respect, the first known silver copper oxide, Ag2Cu2O3,
has been synthesized recently by Gómez-Romero et al.
[10,41] After a preliminary report on its synthesis and
crystal structure, a detailed study of some of its physical
properties including magnetic properties was published.
This work presents the combined theoretical and
experimental study that will be summarized here as an
illustration of the calculation of exchange coupling
constants using CRYSTAL to perform B3LYP spin
polarized electronic structure calculations for periodic
systems.
The variation of the molar magnetic susceptibility

with the temperature at 10 kG was measured for
Ag2Cu2O3. The curve showed that the susceptibility
(5.9
 10�4 cm3mol�1 at 290K) increased upon cooling,
reaching a broad maximum at ca. 80K (w ¼ 7:1

10�4 cm3mol�1). Below this temperature an abrupt drop
of the magnetic molar susceptibility is observed. The
position of the maximum, together with the continuous
decrease in the wT values is indicative of the anti-
ferromagnetic behavior of the compound. As discus-
sed above, from the crystal structure (Fig. 2) one
should expect important superexchange interactions
through the oxo bridges to arise both along the chains
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Fig. 5. Schematic representation of the three spin configurations

considered to obtain the exchange coupling constants for CuGeO3.

Table 3

Exchange coupling constants J (K) and spin densities on the copper

atoms rCu calculated for CuGeO3 using several methods

Jc Jb rCu

UHF +43.8 �11.2 0.92

LDA �995.6 �490.0 0.18

BLYP �1961.0 �115.4 0.31

B3LYP �142.7 �10.4 0.67

Exp. �120 to �180 �12 to �18 0.7

Hartree–Fock values calculated employing Eq. (2b) for the pairwise

interaction.
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(crystallographic a and b directions and between them
(crystallographic c direction. Interactions through the
Ag ions can be neglected in a first approximation.
Although there are no models available for extracting
exchange coupling constants from susceptibility data for
three-dimensional compounds, a semiquantitative ap-
proach was adopted in which a mean field corrected
chain model was employed in which interchain coupling
is considered. The best fit of the experimental data to
this model gives Ja ¼ �77:3K and Jc ¼ �32:2K for the
intra- and interchain interactions, respectively. In the
fitting procedure only data obtained above 85K were
considered because the model is not valid for long-range
ordered magnetic states which could be involved in the
susceptibility drop below 75K. Taking all these approx-
imations into account, the exchange coupling constants
obtained cannot be taken as precise numerical values
but they lead to two qualitative conclusions that should
be reproduced in the theoretical study: (a) the com-
pound is moderately antiferromagnetic and (b) coupling
between chains is similar in sign and magnitude to that
within the chains.
Electronic structure calculations using the B3LYP

functional for Ag2Cu2O3 and isostructural paramelaco-
nite (Cu4O3) confirm the picture obtained from experi-
mental data. As mentioned above three magnetic
configurations (Fig. 3) must be considered in this case
in order to compute the two coupling constants
considered. For both compounds the A0 spin distribu-
tion is found to be the most stable one. By applying
Eqs. (4a) and (4b) we find Ja ¼ �32:5K, Jc ¼ �32:4K
and Ja ¼ �16:0K, Jc ¼ �14:2K for Ag2Cu2O3 and
Cu4O3, respectively. Although in this case we do not
have accurate experimental values for comparison, these
calculated coupling constants are fully consistent with
the conclusions obtained from experimental data show-
ing that the theoretical calculation of the coupling
constants can be a valuable tool to extract information
at the microscopic level even in cases were no precise
experimental information is available. For a more
complete discussion on the values of the calculated
coupling constants and their relation to exchange
coupling constants in related molecular and solid
state Cu(II) compounds the reader is addressed to the
original Ref. [10].

7. Magnetic properties of transition metal complexes

with the dicyanamide anion

One of the most recent areas of interest in molecular
magnetism is the engineering of infinite metal-organic
polymeric frameworks with the aim of constructing
novel crystal architectures with interesting magnetic
properties. A key factor in this purpose is the magnetic
coupling between nearest neighbor metal-based spin

sites provided by an intermediary ligand. Except for
ligands bearing unpaired electrons, the strongest cou-
pling, in general, is expected for the ligands with the
fewest atoms and the greatest conjugation. The ability of
cyanide, tricyanomethanide and dicyanamide to form
homoleptic compounds as well as to bridge two or more
metal ions together with their highly conjugated nature
has triggered in recent time an intense research effort in
the synthesis and characterization of novel three-
dimensional network solids with these ligands exhibiting
interesting magnetic properties [82].
In this contribution we will focus on the magnetic

properties of the M[N(CN)2]2 (M=V(II), Cr(II),
Mn(II), Fe(II), Co(II), Ni(II) and Cu(II)) series of
homoleptic transition metal compounds obtained with
the dicyanamide ion [83,84]. Experimental studies show
that with the exception of the Cu compound [83], which
behaves as a paramagnet, all other show spontaneous
magnetization and have well-defined hysteresis loops
below their Curie temperatures which can be as high as
47K (M=Cr(II)) [85]. Detailed studies show that
M[N(CN)2]2 (M=Co(II), Ni(II)) [86] behave as ferro-
magnets while M[N(CN)2]2 (M=V(II), Cr(II), Mn(II)
and Fe(II)) order as weak ferromagnets (or canted
antiferromagnets) [82,85,87]. It is also interesting to note
that the Fe compound has the largest coercive field
(17 800Oe) of all known metal-organic magnets and
even larger than alloys containing rare-earth elements
such as SmCo5 or Nd2Fe14B [83].
Since despite of forming an isostructural series there is

a considerable variation in the magnetic properties of
these compounds we found it interesting to analyze the
metal–metal exchange coupling interactions in them
using electronic structure calculations. The crystal
structures of M[N(CN)2]2 are based on close packing
of linear ribbons that propagate along the crystal-
lographic c direction (Fig. 6). Within these ribbons
(Fig. 6 top) the dicyanamide ions form double bridges
between neighboring metal ions. Coordination of the
metal atoms to the amide nitrogen atoms of adjacent
chains complete the three-dimensional framework
shown in Fig. 6 bottom. As can be seen in Fig. 6 the
metal atoms in this structure show a pseudo-octahedral
4+2 coordination environment. An alternative descrip-
tion of the structure is to see it as a single network,
isostructural to the rutile polymorph of TiO2 where M

and the dicyanamide ion replace Ti and O, respectively.
From the exchange coupling point of view, in the

present rutile-type structure there are four independent
nearest neighbor interactions: eight equivalent super-
exchange M–N–C–N–M0 pathways between adjacent
chains with an M?M separation around 5.9 Å (Fig. 6);
two equivalent interactions along each of the crystal-
lographic a- and b-axis with M?M separations of
about 6 and 7.1 Å, respectively; and a further two
superexchange interactions along the c-axis through the
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two five-atom N–C–N–C–N bridges with a M?M

distance around 7.3 Å (Fig. 6). Within this structure it is
evident that the signs and magnitudes of the coupling
constants, and hence the magnetic properties of the
material, will strongly depend on fine structural details
such as the M–N coordination distances and of the
degree of structural distortions. The absence of a clear
relationship between the metal spin state and the Curie
temperatures for the different metals provides a further
evidence on the dependence of the magnetic properties
on structural details rather than on the metal spin state
alone. The paramagnetic behavior in the copper
compound is likely to arise from a severe weakening
of the superexchange interaction between chains due to
the Jahn–Teller distortion around the Cu(II) ion. It is
further indicative that, as expected from their relatively
long M?M distances, all other exchange interactions in
the structure must be very weak. Taking these con-
siderations into account we will only consider in the
present study the super-exchange interaction between
neighboring chains mediated by the three-atom N–C–N
bridges.
From the computational point of view, the calculation

of the coupling constant for the interaction between
adjacent chains is fairly simple in this case. Since there
are only two equivalent metal atoms per unit cell, the
difference between the ferromagnetic and the antiferro-

magnetic solution leads directly to the value of Jd (the d

subscript indicates that this interaction is in the direction
of the diagonal of the a- and b-axis of the unit cell, see
Fig. 6). For the calculation of other coupling constants
larger supercells are needed.
The calculated coupling constants for the

M[N(CN)2]2 (M=Cr(II), Mn(II), Fe(II), Co(II), Ni(II)
and Cu(II)) series of compounds using the B3LYP
functional are shown in Table 4 together with the
experimentally observed magnetic behavior and order-
ing temperatures. Taking into account that a simplified
model with colinear spins is adopted in our calculations,
the calculated results are in good qualitative agreement
with the available experimental information except for
the case of the Fe compound. For M=Co(II) and Ni(II)
ferromagnetic coupling is predicted and the relative
magnitude of the coupling constants agrees well with the
observed ordering temperatures which indicate a higher
value of Tc for the stronger coupling predicted for the
nickel compound. The same behavior is found for
compounds containing Cr(II) and Mn(II) where the
higher ordering temperature corresponds to the com-
pound for which the stronger coupling (antiferromag-
netic in this case) is predicted. The almost negligible
coupling constant calculated for the copper compound
is also in good agreement with the paramagnetic
behavior observed for Cu[N(CN)2]2.
The case of the Fe compound poses an extremely

difficult problem to the computational approach to
determine the coupling constants. In the relatively weak,
pseudo-octahedral ligand field the 3d6 electronic config-
uration is expected to give raise to the 5T2g state. With
two unpaired electrons in the t2g orbitals and two in
the eg ones there will be an equivalent number of
antiferromagnetic and ferromagnetic interactions, with
the total coupling resulting from a subtle balance
between these four interactions. In addition, spin–orbit
coupling effects, which are large for the Fe(II) com-
pound have neither been taken into account in these
calculations.
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Fig. 6. Crystal structure for the series of M[N(CN)2]2 compounds

showing (top) the segment of a chain with each M atom being

hexacoordinated and bridged by m3-[N(CN)2]
� ions and (bottom) a

view parallel to the chains. The two possible superexchange pathways

for this structure are also indicated. Carbon, nitrogen and metal atoms

are represented by black, white and gray spheres, respectively.

Table 4

Exchange coupling constants Jd (K) calculated for the M[N(CN)2]2
series of compounds using the B3LYP functional

M(II) Jd Observed behavior Tc

Cr �12.4 c-AFM 47

Mn �1.8 c-AFM 16

Fe +0.1 c-AFM 18

Co +1.9 (+0.6) FM 9

Ni +3.2 (+2.0) FM 21

Cu +0.1 CW —

Values in parentheses correspond to the mean-field result for Jd given

in Ref. [87]. Experimentally observed magnetic behavior (FM=ferro-

magnetic, c-AFM=canted antiferromagnetic, CW=Curie–Weiss be-

havior) and ordering temperatures Tc (K) are also indicated

[83,84,86,87].
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As a conclusion, we can state that calculation of the
exchange coupling constant for the three-atom N–C–N
path in this family of compounds provides a reasonable
explanation of the properties for all the compounds in
the series with the exception of Fe[N(CN)2]2. Since the
alternative superexchange path Jc through five-atom
N–C–N–C–N bridges may play also a significant role in
the magnetic properties of these compounds, current
investigations in our group are being carried out
performing calculations using a doubled supercell in
order to be able to evaluate the relative magnitude of the
coupling constant for this alternative path.

8. Conclusions

The three examples presented in this communication
show that the evaluation of exchange coupling constants
for relatively complex solids containing open-shell
transition metal ions can be used as a valuable and
reliable source of information for the interpretation of
their magnetic properties. The implementation of the
computational tools that are required for this task in a
standard program like CRYSTAL opens the possibility
of calculating these parameters to any researcher in the
field. It should be, however, reminded that the calcula-
tions described above are in no way easy, routine
calculations and that they can become very time
consuming, especially in the case in which the use of
supercells is needed to extract the whole set of coupling
constants.
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Appendix A. Computational details

The evaluations of exchange coupling constants
presented in this work has been performed via density
functional calculations using the CRYSTAL-98 package
[22] with the B3LYP combination of exchange and
correlation functionals. In all calculations for the
evaluation of the Coulomb and exchange integrals
tolerance factors of 7, 7, 7, 7 and 14 were used and
the convergence criterion for the energy set to 10�7 a.u.

[88,89]. Specific details for each of the systems studied
are as follows:

Ag2Cu2O3 and Cu4O3: A triple-z quality basis set of
gaussian-type functions including polarization functions
was used in the calculations for copper and oxygen
atoms while a double-z basis set was employed for silver
atoms. The contraction schemes adopted are (633311/
53211/531) for the silver atoms, (632111/33111/311) for
the copper atoms and (8411/411/1) for the oxygen
atoms. Integration of k-dependent magnitudes in the
reciprocal space was carried out using a mesh of 46
k-points for the F and A states and of 68 k-points for
the A0 one.

CuGeO3: A triple-z basis set with a polarization
function was employed with a contraction scheme
(632111/33111/311) for the copper atoms, (8411/411/1)
for the oxygen atoms and (97631/7631/61) for the
germanium atoms. A total of 170 k-points were
employed to perform the integration of the k-dependent
magnitudes in the reciprocal space.

M[N(CN)2]2: For the metal atoms, we have em-
ployed a double-z basis set with a contraction scheme
(86411/6411/41) while for carbon and nitrogen atoms a
6-21G basis set was used. Although a smaller basis set is
used for this family of compounds, previous work on
molecular compounds [19] has shown that it is sufficient
to reproduce the coupling constants at a qualitative
level. A mesh of 80 k-points was employed for the
integration in the reciprocal space.
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P. Alemany, E. Ruiz, M. Salah El-Fallah, S. Alvarez, P. Gómez-
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